Storm Protection Services of Mangrove Forests

Jacob Hochard*, Stu Hamilton! & Edward Barbier%

2016 Social Coast Forum

Charleston, South Carolina

^{*} East Carolina University

[!] Salisbury University

[%] University of Wyoming

• Do tropical cyclones influence economic growth?

- Do tropical cyclones influence economic growth?
- Does frequency of exposure matter?

- Do tropical cyclones influence economic growth?
- Does frequency of exposure matter?
- Are cyclone-prone areas better adapted to cyclone exposure?

- Do tropical cyclones influence economic growth?
- Does frequency of exposure matter?
- Are cyclone-prone areas better adapted to cyclone exposure?
- Do mangrove forests insulate economic growth from exposure?

Datasets

- 81 countries 7,296 lowest administrative units (LLAs) globally
- 791 historical cyclone paths (85-12)
- LandScan population data (00-12)
- NOAA nighttime lights (00-12)
- World Bank Development Indicators (00-12)
- Global high resolution mangrove forest cover (00-12)

Predicting LLA-level economic growth

Predicting LLA-level economic growth

Predicting LLA-level economic growth

Country calibration:

$$\Delta \textit{GDP}^{\textit{pc}}_{\textit{c},t} = \alpha_0 + \alpha_1 \sum_{i=1}^{N} (\frac{P_{i,c,t}}{\sum_{i=1}^{N} P_{i,c,t}}) (\Delta L_{i,c,t}) + \gamma_c + \delta_t + \epsilon_{c,t}$$

Village prediction:

$$\Delta G \hat{D} P^{pc}{}_{i,c,t} = \hat{\alpha_0} + \hat{\alpha_1} (\Delta L_{i,t}) + \hat{\gamma_c} + \hat{\delta_t} + \epsilon_{i,c,t}$$

- $\Delta \textit{GDP}_{c,t}^{\textit{pc}} = \text{Change in GDP per capita}$
- $\Delta L_{i,t}$ = Change in nightime lights
- i = village
- c = country
- t = year
- α_1 = lights to growth calibration parameter
- γ_c , $\delta_t =$ year and country aggregation restrictions

Methods:

Autoregressive distributed lag (ADL) model (n = 4)

$$In(GDP_{i,p,t}^{pc}) - In(GDP_{i,p,t-1}^{pc}) = \sum_{i=0}^{n} (\beta_{i}C_{i,t-L}) + \gamma_{p} + \tau_{t} + \alpha X_{i,t} + \epsilon_{i,t}$$

Methodological approach:

Autoregressive distributed lag (ADL) model

$$\mathit{In}(\mathit{GDP}^{\mathit{pc}}_{i,\mathit{p},\mathit{t}}) - \mathit{In}(\mathit{GDP}^{\mathit{pc}}_{i,\mathit{p},\mathit{t}-1}) = \sum_{i=0}^{n} (\beta_{i} \mathit{C}_{i,\mathit{t}-\mathit{L}}) + \gamma_{\mathit{p}} + \tau_{\mathit{t}} + \alpha \mathit{X}_{i,\mathit{t}} + \epsilon_{i,\mathit{t}}$$

Methods:

Autoregressive distributed lag (ADL) model

$$In(GDP_{i,p,t}^{pc}) - In(GDP_{i,p,t-1}^{pc}) = \sum_{i=0}^{n} (\beta_{i}C_{i,t-L}) + \gamma_{p} + \tau_{t} + \alpha X_{i,t} + \epsilon_{i,t}$$

Results: Do tropical cyclones influence economic growth?

- Panel from 2000-2012, 7,298 LLAs, AR(4).
- 50km exposure buffer.
- Standard errors clustered at hurricane basin level.
- Year, province & country-year fixed effects.
- Sample includes only those LLAs within 50km of coastline.

Results: Does frequency of exposure matter?

- Panel from 2000-2012, 7,298 LLAs, AR(4).
- 50km exposure buffer.
- Standard errors clustered at hurricane basin level.
- Year, province & country-year fixed effects.
- Sample includes only those LLAs within 50km of coastline.

Result: Are cyclone-prone areas better adapted to cyclone exposure?

Result: Are cyclone-prone areas better adapted to cyclone exposure?

Result: Do mangrove forests insulate economic growth from cyclone exposure?

